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INTRODUCTION

The Hermite polynomials {p,(x)}*., may be defined by their
orthogonality property as

> 2 _ 05 n?ék7
" nwemexp-aa={y 1T

and

palx)=7,x"+ ---,  where 7,>0.

These polynomials as well as other classical orthogonal polynomials
have been widely studied. In this paper a new way of obtaining pointwise
estimates of p,(x) is explained. It is then shown that the method applies for
a more general class of orthogonal polynomials, the so-called Freud poly-
nomials.

We list exactly the type of estimates we are aiming for in

THEOREM 1. Let p,(x) denote the Hermite polynomial of degree n. Then
there exist positive constants C, D, and E such that

(i) pi(x)exp(—x*)<C/\/2n+1—x> when |x| < /2n+1,
(ii) max, g p2(x)exp(—x>)<Dn "¢ and
(i) max, g p2(x)exp(—x?)=En~ 'S, forn=1,2,3, ..

These results are known from more informative asymptotic formulas (see
Erdélyi [2]). Our approach to these estimates will be stated below and
generalized to the Freud polynomials later.

210
0021-9045/90 $3.00

Copyright ;€ 1990 by Academic Press, Inc.

All rights of reproduction in any form reserved.



4
i
[

HERMITE AND FREUD POLYNOMIALS

THE STRATEGY

a different
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It is weil known that the Hermite polynomials sati
equation of the form

XY+ Plx, n) z(x3=0,
where
z2(x) = p,(x) exp(—x?2),
and
d(x,n)=2m+1—x%

The key observation in verifying our estimates of the Hermite polyn
mials is this: Whenever the product #(x, n} z{x} is positive, the graph

v=z{x) is concave down and we have the inequality

/

o
o

,—(r\._(b_—i)<i‘b T(y)d\; a<iti<h

z(2) 5 S| )y, a<t<i
when z{x) is positive. The inequality simply says that the area under the
curve z from a to b is larger than the area of the triangle with height =iz},
whose base on the x-axis has length £ —a.

To estimate the above integral, where a < b are consecutive zeros of p,,
we make a three-way attack. First we use Schwartz’s inequality, %‘er
Sturm’s estimate for consecutive zeros of z(x) in estimating the quantit
& — a. Finally, basic identities from the othogonality of the Hermite polyne-
mials allow estimates of the resulting integrals and produce part (i} of the
theorem. To complete the results of the theorem we find that {ii} foliows
immediately from the estimates produced in (i). But part (iii) presents
technical complications because our approach involves estimating the
kernel function

Bty

a—-1

K, (x)= 3 pix).

j=¢
THE PROOF
From the differential equation we observe the following:
COROLLARY 1. Ler |x| < /2r+1 Then for some zero Xy, of p,{x) we

have
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Proof. Since we will use Sturm’s Comparison Theorem, we introduce
the differential equation

Z/(x)+(2n+1-1) z,(x)=0,
so that
2n+1—1‘2<2n+1—x2 when |x|<t<\/2n+l

Sturm’s Theorem says that the zeros of z(x) separate the zeros of z,(x). But

since z,(x)=sin(\/2n+1—tz)x is a solution to the above differential
equation, which has zeros

xk=%, k=0, +1, +£2, ..,
we get
lx —x ]<____7r___
ol S o

for some zero x,, of p,(x). The corollary follows by noting that ¢ is
arbitrary except for the inequality |x| < |f| < /2n+1.

Another important relationship is the closeness of x,,, the largest zero of
—
Pa(x)to \/2n+1.

COROLLARY 2. |/2n+1—x,|<(z+1)n~ " forn=1,2,...

Proof. From the differential equation we have x,, <./2n+ L. Letting
—1/6
x=./2n+1—n""% one uses Corollary 1 to complete the proof. |

Note that the number = + 1 appearing in Corollary 2 is not important
for us: our main concern is the factor n~® which appears.

The reader will recall our strategy calls for some basic inequalities from
orthogonal polynomials. The first identity is the Gauss—Jacobi formula (for
a proof see Szego [8]).

THEOREM 2. For any polynomial ,,_, of degree at most 2n— 1
_‘ an—1(x) exp(—x?) dx = Z Ton—1(Xkn) An
- k=1

Jor some numbers A, k=1,2, .., n, which do not depend on the particular
polynomial 5, .
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Using the Gauss—Jacobi formula and the identity (see Szegd [8]}

Pa(x)=/2np, (x)

relating the Hermite polynomial and its derivative gives us the following
corollary whose proof is due to G. Freud (see [3]).

CoOROLLARY 3. Let p,(x) denote the Hermite poiynomial of degree n,
then

124 .. -
2 = Pn ("\kn) A
Proof. Let

pn(x)pﬁ.—i(x)

X — Xy

Tan— 1 (X)=

in Theorem 2. A direct evaluation of each side of the equation gives

Tn—1 , (o h 2
_';_- = pn(xkn) pn— i i'\""kn; Akrz'
in
Corollary 3 now follows from the identity relating the Hermite polynomial
and its derivative. |
We are now prepared to prove part (i) of our theorem.
Proof {Part(i)). Let |x| S\/2n+ 1. By the concavity of z(x
compare areas as explained earlier and get

~

We Can

(x)(x_xkn)si Z(‘,} dr.

=z
2 Y Xicn;

By Schwartz’s inequality

(1 2 e p? () exp(—x?) L \/¢x N
L —xanb <([7 2SR AT )
:\_Z i Y- (x_xkn)_ /'.\J-an /
’ P (x'_xkn)3
=pn2(xkn)/'kn __3-_—

Therefore, from the above and Coroilary 3,

2(x) < 3x—x,).

The proof of part (i) now follows from Corcllary 1. §

S’

For the proof of part (ii) of our theorem, observe that, since z{x

[§})

decreases when x> ./2n+ 1, we may use part (i) when [x{ <x,,, then us



214 BONAN AND CLARK

the last inequality in the proof of part (i) when x,, < [x] €./2n+ 1. Part
(ii) now follows from Corollary 2, the estimate of x,,,.

Our technique for verifying part (iii) of our theorem is based on the
identity

-] (2 ) exp(=x’)

2 “ts
X=Xy Pr (xln) ;'ln

v —xc

which is a direct result of the Gauss—Jacobi formula. We will show that a
significant amount of the integral occurs away from x,,. That is, for some
&>0, we claim that

1 ¢ (pn(X) )2 exp(—x?)

ES 2 5
Yx —xipl men L6 \X — Xy, Pr (xln) an

dx, (*)

which implies

1<max p2(x) exp(—x)en™") "

2

completing part (iii) of our theorem.
In order to show that (*) holds for some ¢ >0 we first mention a basic
inequality from orthogonal polynomials (sec Szegd [8]).

THEOREM 3.

e n—1
([ w2 wen-ra) T rim),
x k=0

for any polynomial n,,_, of degree at most n— 1.

We can now estimate that part of the integral near x,, by

r < pn(x) )2 exp(—x2) dx
|x — X1, Sen—16

" 200 3y 4
X —Xin Py (’xln) Ain
o n—1
</ (Z pi(x)) exp(—x?) dx
Yox—xplsen=l® \gZo

n—1
— 16 2 L2
< 2en max (kgo pk(x)> exp(—x?).

X — X1l Sen” Y

This leads us to the problem of estimating the Kernel function

n—1

K,(x)= 2 pi(x)
k=0

e

in the interval |x—x,,|<en”"‘. We outline this task as follows. If

[x] <./2k + 1 we may use our estimates in part (i) to estimate p; (x), while



HERMITE AND FREUD POLYNOMIALS

if x is near \,-""2k+ I we use the result of part (ii). But if {x{>./2k + i we
vill need another way of estimating pz (x). The way we wiil accomplish this
will be the following,

Consider

o
fapet

PP =2+ 1) 2y di<0 for x> 2n+ L

i
< xa

Examining where the integral is positive and negative leads to

Ay 2nr 1 ) o
(n+1—12) z(1) dt> |

Y xa Y 2t

To complete the pointwise estimate of z(x
part {ii} of our theorem to bound ma)‘.,,iz 1),
Coroliary 2 to estimate x, in the left hand

LEmMA 1. For some positive constant F

F;,!—S. 12
|2'1X)! L—— whek
W= / 2
(x—/2n+ 1)

New we bound the kernel function K, {x) using Lemma | and parts &
f our theorem, and get

n—1
max (Z il x}‘iexp{—x <Gt

X — Xy K an 16\/\-0

for some positive constant G. Thus we see that (*} holds when e < 1.2
and part (iii} is verified.

(GENERALIZING TO THE FREUD POLYNOMIALS

In order to define the Freud polynomials we simply go back and change
e

the x* to x™ with m an even positive integer:
nX N
P pu(x) pilx) exp(—x"} dx
Yoo

where p,{x) has positive leading coefficient 7.
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Geza Freud investigated these polynomials and their properties exten-
sively, and recently others have studied them. Some studies and surveys
may be found in [1, 4, 6, 7]. Henceforth we use p, (x) for this more general
case.

We will presently see that our method applied to the Hermite polyno-
mials also works for the Freud polynomials. However, some of the details
are more complicated, and we need to consider some formulas in more
detail, formulas we have learned to take for granted in the Hermite case.

For a statement of the results we refer the reader to the end of the paper,
although it is a good idea to note where the “Freud constant” is defined,
below.

DIFFERENTIAL PROPERTIES

It is convenient to start with the recurrence formula

. __yrl-l Yn—2
xpn—l(-x)— — pn(x)+m
tn in—1

Pn—z(x)-

Now what is y,_,/y,? Freud conjectures a value of y,_,/y,, and finally
Maté, Nevai, and Zaslavsky [5] established an asymptotic series. We will
use their first term and a convenient error term in estimating 7, _ ;/7,-

THEOREM 4.

v
/n—1

——=pn'" + e,

Va
where
le | <Hn 1*YV™  for n=1,2,..
and some positive constant H. Here 8 denotes Freud's constant
B=H{m 2T (m/2)/T(m + 1/2) .

To facilitate the presentation we introduce a new notation to denote the
relationship in the first two lines of Theorem 4. The expression

tees_ e

/'n

abbreviates the statement in Theorem 4. More specifically,

a,=Lf(n)]
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[

means that for some sequence {&,}’_;
a,=f(n)+e,
where
e, <Hn ' 1" for n=1,2,.. and H>0.

With the above notation the recurrence formuia takes the form

CorOLLARY 4. xp, ((x)=[Bn" "] p(x}+[Bn""] p, _:{x)

7

A simple consequence of Corollary 4 is

COROLLARY 5.

r. r
xrpn(x)= Z <I> [Bnln‘ﬁr 5,1TL,_,.{Y\}
for any nonnegative integer r.

Proof. If r=0 we get p,(x)=p,(x). Proceeding inductively, consider
r>0

x'p,(x)=x(x"""p,(x))

r—1
=X Z ( )Eﬁnlm}'—“ﬁ,,“ o nix)
j=0 J
i ( ) [Bn' ™Y = (LB ™ Py s v ia(x)
j=0

[ﬁ ! m] pn4—2/fr“c)}

r—1

[y —
= Z (r i >[ﬁnlm~‘rp'*717’

j=0\

-+ i /r—l) [‘6 l-'m}r RN
' . n- Puvzj— Xk
j=1 K] —1 /
The verification is completed using the well known identity
—1 -1
(520
J -1/ \J

We are now getting ready to derive a differential equation for p,(x}, the
first step is
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THEOREM 5.
P:,(X)ZAn(X) pn~1(x)_Bn(x) pn(x)’

where

(m/2y—1 . ] 2 .
An(x)zm Z [ﬁnl,'m]21+1< .>xm_2,_2
i=0

1

and.

(m:2)~2 o (2041 :
B,(x)=m Y [ﬂnl"'"]"+2< [—1. )x”""‘3 (m>2).
i=0 t

Proof. We start with a Fourier expansion of the polynomial

n—1

pa(x)=Y appy(x)

k=0
with

o0

ak:[

| Pn(2) pr(t) exp(—1™) dt

2

=m | p,(t) pe(t) 1" exp(—1™) dr.

Py n—1
p@=m [ (S pelx) ) 2017 expl—)

"= \k=0

p,(2) " Lexp(— ™) dt.

mynfl J/'3C pn(t) pn—l(x)—pn(x) pnfl(t)

}'n — t—'x
Since
tm—l xmfl
=" x4 X
t—x t—x
and
r nll) Pn— (x)— n\- w1 ! .
[ 20 2e s )= PaC) Pacl8)
Y oo t‘—x
we get

Pn(x)=A,(x) pp_1(x) = B,(x) p,(x)
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with
X S — 2L \\
An(‘{)=,111n~1 ‘ pl(r)( Z L 27,“‘/‘6)&?{_'”11}5:
in v-x Nj=0 /
and
Ay T m—2 \
{x) fnod ) ( 47 »2*' iy 7 Gt
B,(xjy=m™=L|  pt)p, (D) ¥ " T Yexp{—"Y dr.
in Y- j=0 /

To complete the proof we use the evenness and oddness of p,(x) and
Corollary 5 to get

o m—2 \ 5

N —1 VA ra,lmym—2

A (xV=m= S R 17
[ AN - ( ),2}L

in

o m— Jlmym g +vm*’2\'
e (( —412)[’3' )

_ (I>[13 Lm2i 1

[ m—
B l.‘( in—1 i.m m‘*‘_:
LAxX)=m - !\<(m 472 ’ [prn'"]

n
m—

> v
+ [ﬂnlir}m V3 + ”:Ji_:,z——lxmyji
m—06)/ ~— )
(m2)—2 /9
l—"_l i L i 2 b x
=m Z ( ’ )i_,Bll""”:lz’”x"‘“—’!*o (m>2).
i
=0

i \

With Theorem 5 we may derive a differential equation for p,(x) in the
form

THEOREM 6.
2"+ dix, nyz=0,
where
/ xm \' :-' .
z=p,(x)exp \ S A (x) A
and
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The error functions h, and g, satisfy

1, () <2 B,(x))
H

and

2
a0l <2 (8200 + (14257 2 )

for some positive constants ¢, and c,.

Proof. Starting with Theorem 5 we may write the following three
formulas

p::ZAnpn~l _Bnpn
prl; =A;,p,,_1 +A,,p;,_1 - (Bnpn)’

and
Poo1=An 1 Pu_2—B,_1Pn
a1 a1
_ ) —
=An—1 x“ pnfl_m " Pr —Bn—~1pn—1
In—2 inin—2
= A n-1 B "/‘r21~1 A
- n—lx_“ —Pr1 pn-l_—" R n—1Pn-
fn—2 Tnin—2
Therefore

pr’t’=<A;x+An (XAn~l ;'Ll_ __Bll—l)) p'l~1

n—2

,‘/,2 B
_ﬁ__l—'AnAn- 1 Pn— (Bnpn)’
intn—2
A;‘ ".Yn#
=(—+xA,H — ~Bn_1) (pn+ By pn)
An Pn_2

,.VZ
—n—-lAnAn—lpn_ (Bnpn)l'

Tn¥n—2
Rewriting gives
Yo A;’ 2
prlt/+<Bn+Bn—l_-x‘4n»l }_"__1 #_—) p:z+(ll__l_ AnAn—l
Tn-2 An Inin—2

o A’
+Ban~l+B;r_xAnlen /" 1__an>pn=0
Pn—2 A4

n
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N e

7

or

pa+ap,+bp,=0.
~ Letting = = p, exp(4fa dx) we arrive at

"+ d(x,nyz=90
with

2 '

a «a
qﬁ(x,n)—b——x-—:}.

&

As new quantities have been introduced in this proof which we want fo

simplify we interrupt our argument at this time to make some computa-
tions.

LEmvMaA 2.

_
x4

in—2

po1— 2B, =mx" " 4 b (),

where h,{x) satisfies for some positive consiant c,
ihn(x)] g Cln--‘i EB’,(]{H

Proof. Using the integral forms of A, _ | to get the first term we write

(m2)—1 /‘)i-\
fn—1 _ [ &1 {2 22
x2— A, =2B,=mx" " '+m Y {7 J[fatmy -
' i=1 NI/

2! E\ i 35 2 i 3
_.2m Z {l _j_ ) {ﬁnl.'m1;!+-xm72.44.
i c

i=0
From the identity 2(%7') = (%F}?) we get
“ {m2)—2
‘n—1 —1 1 P41 —2i—-3
xl" A,,_1—2B"=mx’" l‘i‘ Z ie}[nx.m]21+Axm 2i—-3
Tn—2

i=0

which completes the proof of Lemma 2. §

Another expression which we simplify is in

LEMMA 3.

A?_ 1 X \‘;2\ RN
¢(X’n)= rz( _<2-Bn'l_-'m/; )Tgn(}:ia

2
S
EN
5
1
6o
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where g,(x) satisfies for some positive constant ¢,

|20 < ( () + (1+~2)A ).

Proof.
a* a
s =b——r—=
$oom=b—F—5
)n~1 In—1 ' A’
= AnAn~l+B Bn—l xAn-lB +B __B
Yn¥n-2 Tn-2 An
1 Tn-1 2
— Bn+Bn~l_XAn-l
4 Yn-2
1 B +B A Iynul A:ﬂ 1 A;z 2
_ —x R L
+2 " n! n_ltn-—z An 4 An
L o , S LA A
el na v

=42 (1 —(2—’6’1—2,,,)2) + g (x).

In estimating g,(x) we use the following five observations that
AI/
IAZI <(m—1)(m-2)

A/

|47 <m—1

n

| B, (x)] < max((m —3) |B,(x)l, B,(1))

and for some ¢>0

|An An-ll SA

"

§

and
4
an~Bn—l‘ <- an}
R

along with many cancellations to get for some positive constant ¢,

g, (X)) < (BZ(x) +(1 +4) 4 (x))
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Lemmas 2 and 3 now complete the proof of Theorem 6. §

The same method used in the Hermite case can be used to obtain
estimates of the Freud polynomials. A technical problem arises because
there is not an exact cutoff for the change in sign of ¢{x, n}. Therefore in
an interval around x,, of size n 722+ we use the identity

r

by

X
"(x)—z'(x5)= ‘ z"{#) dt
L
to estimate z'(x) and in turn use the same identity with z’ replaced by z to
estimate z(x). From the error term in the differential equation of
Theorem 6 we see that there is a final hurdle to overcome, namely to show
that p2(x)exp(—x™) is small when x is large enough. This last detail may
be completed using a method that Freud aiso used. First estimate p, {

p2(x)exp(—x")<yixMexp(—x™)  when x>x,,.
Then use a bound for 7,; i.e., for some constant %x>§
Ta < (ant)
Finally, note that for any &> 0 there is a2 ¢, >0 so that
x?exp(—x™) < (en®*™y*  for x>c.nt™
We conclude with the statement of our theorem.

-

THEOREM 7. Let p,.(x) denote the Freud polynomial of degree n. Then,
there exists positive constants C', D', and E' suck that

—

(i) pi(x)exp(—x™)<C'/\/(2Pn"™y — x* when |x| <2fn' "™,
(i) max, _g pi{x)exp(—x")<D'n**~'" and

(iti) max, _5 p2(x)exp(—x™)ZEn'> """ forn=1,2,3, ..
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