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INTRODUCTIOC>l

The Hermite polynomials {Pn(x)}t~~O may be defined by their
orthogonality property as

and

n =f. k,

n=k,

Pn(X)=l'n xn + ..., where ''in > O.

These polynomials as well as other classical orthogonal polynomials
have been widely studied. In this paper a new way of obtaining pointwise
estimates of Pn(x) is explained. It is then shown that the method applies for
a more general class of orthogonal polynomials, the so-called Freud poly
nomials.

We list exactly the type of estimates we are aiming for in

THEOREM 1. Let Pn(x) denote the Hermite polynomial of degree n. Then
there exist positive constants C, D, and E such that

(i) P;'(x) exp( _X2)~ C;.,/2n + i-x2 when [xl~~,

(ii) maxxERP~(x)exp(-x2)~Dn-1;6, and

(iii) maxXE [1;! P~ (x) exp( - x 2
) ~ En -1.'6,/or n = 1, 2, 3, ...

These results are known from more informative asymptotic formulas (see
ErdeIyi [2]). Our approach to these estimates will be stated below and
generalized to the Freud polynomials later.
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THE STRATEGY

It is well known that the Hermite polynomials satisfy a differential
equation of the form

z"(x) + rjJ(X, n) Z(X) = 0,

where

z(x) = Pn(X) exp( -x2/2),

and

1J(x, n)=2n+ 1-x2
•

The key observation in verifying our estimates of the Hermite polyno
mials is this: Whenever the product ¢i(x, n) .:-(x) is positive, the graph of
y = .:-(x) is concave down and we have the inequality

(b-a) ;,b •
z(t)·--~-~! .:-(x) ax,

L "a
a < t < b~

when z(x) is positive. The inequality simply says that the area under the
curve z from a to b is larger than the area of the triangle with height z(t),
whose base on the x-axis has length b - a.

To estimate the above integral, where a < b are consecutive zeros of p",
we make a three-way attack. First we use Schwartz's inequality, then
Sturm's estimate for consecutive zeros of .:-(x) in estimating the quantity
b - a. Finally, basic identities from the othogonality of the Hermite polyno
mials allow estimates of the resulting integrals and produce part (i) of the
theorem. To complete the results of the theorem we find that (ii) foHov,is
immediately from the estimates produced in (i). But part (iii) presents
technical complications because our approach involves estimating the
kernel function

n-l

K,,(x) = L p}(x).
j~O

THE PROOF

From the differential equation we observe the following:

COROLLARY 1. Let Ixi ~ ,,/2n + 1. Then for some zero Xkn of p" (x) ire
have

'IT
Ix-xknl ~ , 2

I", • 1
'./ L.n -+- >-X
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Proof Since we will use Sturm's Comparison Theorem, we introduce
the differential equation

z;'(x) + (2n + 1- t 2
) z,(x) = 0,

so that

2n + 1- t2
~ 2n + 1- x 2 when

r--
Ixl~t~.j2n+1.

Sturm's Theorem says that the zeros of z(x) separate the zeros of z{(x). But

since z{(x) = sin(J2n + I-t 2 )x is a solution to the above differential
equation, which has zeros

k = 0, ± 1, ± 2, ...,

we get

n
Ix - Xkn I~ ---::-===~

J2n + 1- t 2

for some zero Xkn of Pn(x), The corollary follows by noting that t IS

arbitrary except for the inequality Ixi ~ Itl ~ .,/2n + 1. I

Another important relationship is the closeness of Xln, the largest zero of
~

Pn(x) to v' 2n + 1.

COROLLARY 2. IJ2n + 1- xlnl ~ (n + l)n -1/6, for n = 1, 2, ....

Proof From the differential equation we have XVI < )2n + 1. Letting
x = )2n + 1- n -1/6, one uses Corollary 1 to complete the proof. I

Note that the number n + 1 appearing in Corollary 2 is not important
for us: our main concern is the factor n -1/6 which appears.

The reader will recall our strategy calls for some basic inequalities from
orthogonal polynomials. The first identity is the Gauss-Jacobi formula (for
a proof see Szego [8]).

THEOREM 2. For any polynomial n 2n - 1 of degree at most 2n-l

~OC n

J n2n _dx)exp(-x2 )dx= L 1r2n--dxkn)A.kn
-r£· k~ 1

for some numbers Akn, k = 1, 2, ..., n, which do not depend on the particular
polynomial n2n - 1 .
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Using the Gauss-Jacobi formula and the identity (see Szego [8J)

'() '" (Pn X = Y L.npn_l .x)
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relating the Hermite polynomial and its derivative gives us the following
corollary whose proof is due to G. Freud (see [3]).

COROLLARY 3. Let PII(X) denote the Hermite polynomial of degree n,
then

Proof Let

Pn(X)P"_l(X)
7[2n_l(x)= . v

X - ~""'kn

in Theorem 2. A direct evaluation of each side of the equation gives

Coroilary 3 now follows from the identity rdating the Hermite polynomial
and its derivative. I

We are now prepared to prove part (i) of our theorem.

Proof (Part (i)). Let Ixi ~ J211 + 1. By the concavity of z(x) we can
compare areas as explained earlier and get

1 oX

2" z(x)(x - Xkll) ~ J. z(t) dt.
X/(/i

By Schwartz's inequality

q )2 (rae p 2 (x)exp(-y2) \/'x . \
~::;:Z(X)(X-Xkn)( ~.I II (_ )2'" dx Hi (t-Xknfdt I
"L ) -- xc X X kn. / \. xkn i

Therefore, from the above and Corollary 3,

The proof of part (i) now follows from Corollary 1. I

For the proof of part (ii) of our theorem, observe that, since z(x)

decreases when X> ,,/211 + 1, we may use part (i) when Ix; ~Xln' then use
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(*)

the last inequality in the proof of part (i) when X 111 < Ixl < y'2n + 1. Part
(ii) now follows from Corollary 2, the estimate of X!n-

Our technique for verifying part (iii) of our theorem is based on the
identity

which is a direct result of the Gauss-Jacobi formula. We will show that a
significant amount of the integral occurs away from XVI' That is, for some
8> 0, we claim that

1
(

.) )2 2
I
" Pn(;r: exp(-x)-< --- " . dx,

2 'Ix - xlnl;. ell- l.6 X - X In Pn- (x In) l'ln

which implies

!<max p~(x) exp( _x2 )(an- 16
)-I,

XE H

completing part (iii) of our theorem.
In order to show that (*) holds for some 8> 0 we first mention a basic

inequality from orthogonal polynomials (see Szego [8]).

THEOREM 3.

1t~-dX)<U~x 1t~_dt)exP(-t2)dt)C~~ P~(X)),

for any polynomial TC n _ 1 of degree at most n- 1.

We can now estimate that part of the integral near x 11z by

<Jx-xlnl <;;en- i 6 C~~ p~ (X)) exp( _X
2
) dx

< 2an-
L6 ,x_x~~Xen-16C~~ P~(X)) exp( _X

2
).

This leads us to the problem of estimating the Kernel function

n-I

Kn(x) = I p~(x)
k~O

in the interval Ix-xlnl <8n-
I
/
6

. We outline this task as follows. If
Ixl <,/2k+ 1 we may use our estimates in part (i) to estimate pUx), while
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if x is near v/2k + 1 we use the result of part (ii). But if [xl:;=: ,,/2k + 1 we
will need another way of estimating p; (x). The way we will accomplish this
will be the following.

Consider
... x

z'(x) = I z"(t) dt,
01 xo

\\~here :'(xo)=O and xOE[xln~v·/2n+1J, Since z(x'~ decieases for

x> ,,/2n + 1,

:'X (t"-(2n+l))z(t)dr<O
I

.. Xl)

for .Y > ...../ 2n + 1.

Examining where the integral is positive and negative leads to

."" '2n + 1 ,"x

i (2n+l-r")z(r)dt> I (t"-(2n+l))z(t)dt.
~i Xl::'! ~I..... 2n + 1

To complete the pointwise estimate of z(x) for [x[ > ",/2n + 1 we use
part (ii) of our theorem to bound max t E::< z( t), and the estimate of x [Ii ir:.
Corollary 2 to estimate X o in the left hand side integral above. This gives

LEMMA 1. For some positive constant F

Fn -5.12

I:(x)j ::::; r---- ? when Ixj > ,/2n + 1.
(x- ,,/2n + 1)-

Now we bound the kernel function Kn(x) using Lemma 1 and parts (i)
and Oi) of our theorem, and get

(
,,-1 \

'), - \ - ." '
max I p~(Y) iexn l -"-I<r'n

,6
!X-Xln~~2,n--16\k=C- k .... ) -~, .\. .. --...;::;u.• ~

for some positive constant G. Thus we see that (* I holds when f: < l.'2G,
and part (iii) is verified.

GE~ERALIZI"iG TO THE FRELl) POLYNmnALS

In order to define the Freud polynomials we simply go back and change
the )(2 to x m ',,,ith In an even positive integer:

, ,
n =FK 5

n =k~

where p" (x) has posi tive leading coefficient / iJ'
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Geza Freud investigated these polynomials and their properties exten
sively, and recently others have studied them. Some studies and surveys
may be found in [1,4,6, 7]. Henceforth we use p,,(x) for this more general
case.

We will presently see that our method applied to the Hermite polyno
mials also works for the Freud polynomials. However, some of the details
are more complicated, and we need to consider some formulas in more
detail, formulas we have learned to take for granted in the Hermite case.

For a statement of the results we refer the reader to the end of the paper,
although it is a good idea to note where the "Freud constant" is defined,
below.

DIFFERENTIAL PROPERTIES

It is convenient to start with the recurrence formula

"1 '\'

() i,,-l () 1,,-2 ()XP,,_l X =--p" X +--P,,-2 x.
,,' "I'f n I n-l

Now what is Y,,-IIi',,? Freud conjectures a value of {"-Iii',,, and finally
Mate, Nevai, and Zaslavsky [5] established an asymptotic series. We will
use their first term and a convenient error term in estimating i" _ di',,·

THEOREM 4.

In -1 f3 l/m
--= n' +6",

'I
ill

where

for n=I,2, ...

and some positive constant H. Here f3 denotes Freud's constant

To facilitate the presentation we introduce a new notation to denote the
relationship in the first two lines of Theorem 4. The expression

1',,-1 [f3 lim]--= n·
}'n

abbreviates the statement in Theorem 4. More specifically,
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means that for some sequence {Bn};::~ 1

an=f(n)+<:n'

where
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for n = 1, 2, ... and H> O.

With the above notation the recurrence formula takes the form

COROLLARY 4. XPn_l(X)= [pn!,m] Pn(x)+ LBnI/ZlJ Pn-Jx).

A simple consequence of Corollary 4 is

COROLLARY 5.

, (r)r ~~ _. l:'m -, r n I \

X P,,{-') - ,L i [pn J fJn+2i-,t x j,

]=0 -

for any nonnegative integer r.

Proof If r=O we get Pn(x)= Pn(x). Proceeding inductively, consider
r>O

x'Pn (x) = x(x'-lpn (x))

,-I (r-1) l:m r~ 1 ~ \.
=X 2. ' [pn'] Pn+2j-(I'-:)\Xj

j=O J

r-l(r_1) .._ . l,:m r -- ! j 1:'m""1 (- 2. . [pn ] ([pn J Pn+2j-r+2\X)
j=O J

+ [pn 1m
] Pn+2j-r(X))

'-1/ -1)_ r 1iml'- ,L! i [pn .J Pn~2j-r
]~O \ J

'Ir-1) ..-+- Lm r I ~ '., ,2. I '-1 [pn ] P,,+2j_,\Xj.
J~I \J

The verification is completed using the well known identity

We are now getting ready to derive a differential equation for Pn(x), the
first step is
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THEORaf 5.

where

and.

BONA~ A~D CLARK

p~(x) = An(x) Pn-I (x) - Bn(x) Pn(X),

(m/2)-2 (2' 1)
B,,(x)=m L [fJn 1im

]2i+2 ':- Xm- 2i - 3

j~O I
(m>2).

Proof We start with a Fourier expansion of the polynomial

n-l

p~(x)= L akh(x)
k=O

with

ak = fX P~ (t) h(t) exp( - tm) dt
"'-:t:;.

,x;

=m I PIl(t)Pk(t)tm-1exp(-tm)dt.
.. -x

p~(x)= m ,[x; C~~ heX) Pdt)) Pn(1) t
m

- I exp( _tm) dt

=ml'll-1 r: Pn(t)Pn-dx)-Pn(X)PIl-I(t) Pn(t)tm-'exp(-tm)dt.
}'n -x t-x

Since

tm - I x m - I

__ = tm- 2 + tm- 3x+ .. , +xm- 2 + __
t-x t-x

and

we get

p~(x) = An(x) Pn-I (x) - Bn(x) Pn(x)
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.... 1 ... x 1111-2 \

An(x)=mi':,-li p~(t)( L t"'·2- ix i )exp(-l if1 )dt
in OI_y,:, \;=0 ./

".' .-:c ('" - Z \
1.\ /n-1 . I "\"' ..rn--2-;yi'!. pow ,"m\ .0 ..

Bn\x)=m-,-,-! Pn(tlPn-dt) L. i··l-".p(-, jGI.
/n ..' -- x \ j = 0 /
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To complete the proof we use the evenness and oddness of p,,(x) and
Corollary 5 to get

and

(m > 2). I

With Theorem 5 we may derive a differential equation for Pn (x) in the
form

THEORE\1 6.

z" + t;6(x, n)z = 0,

where

and
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The error functions hn and gn satisfy

CI
Ih,,(x)1 ~-IB,,(x)1

n

and

for some positive constants C 1 and C2"

Proof Starting with Theorem 5 we may write the following three
formulas

p~=A"p,,_,-BnPn

p~=A~p,,_, +Anp~-,-(BnPn)'

and

P~_I = An- 1 Pn-2 - B,,_, Pn-I

(

OJ ",2)In-l /n-l
=An_ , X--Pn-I----Pn -Bn--,Pn-'

"I "0' .... ,
)n-2 inin--2

)
,

"I' .po<.In-I In-I
=(A"_IX-- -B,,_, Pn_,----A"_,P,,.

}'n-2 {'nln--2

Therefore

" (AI A (A 1,,-1 B ))P,,= ,,+ n X n-I-- - ,,-1 Pn-I
1,,-2

,,2
In-1 A A (B ')'---- "n-IPn- nPn

''.I "IInln-2

(A~ I'n-I ) I
= 7+xAn-'-,,- -Bn_ , (Pn+BnPn)

n In-2

Y~-I I----AnAn_ , Pn - (B"Pn) "
In}'n-2

Rewriting gives

" ( 1'''-1 A~) I (/~_IPn+ Bn+Bn_,-xAn __ ,-"- -7 Pn+ -,,-.--AnAn_ ,
Y,,-2 n Infn-2

B B B' A B fn-I A~ B ) 0+ n n-I + n- X ,,-1 n---- n P,,=
In-2 An
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or

p;; + ap;, + bpn = O.

. Letting z = pn exp(Ha dx) we arrive at

z" + <p(x, n)z=O

with

221

i=O

As new quantities have been introduced in this proof which we want to
simplify we interrupt our argument at this time to make some computa
tions.

LEl\fMA 2.

i·:here h,,(x) satisfies for some posith'e constant c ,

Proof Using the integral forms of An _ 1 to get the first term we write

"J • (m,2)-1/)i\
x~A -)B =mxm-1-l-m '" ;~. \ rRn 1;n,,2':>;;m-2i.-2
. ...., n - 1 - lJ ~ ,I L 1;; _ _P ..J ~

/n-2 i=t \"J

{m;2)-2

X :.,,-1 A,,_1-2B,,=mxm - 1+ I [O][n Lm J2i+l Xm - 2;-3

in - 2

which completes the proof of Lemma 2. I
Another expression which we simplify is in

La.mA 3.

(,6(x, n) = A~ (1- (28 X
,nJ.·m
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where gn (x) satisfies for some positive constant Cz

( ( 2) )c2 2 X 2Ign(x)[ ~---;; Bn(x) + 1+ nZ/m An (x) .

Proof

1( In I)A~ 1(A;,)Z+- B +B -xA ---- --- -2 n n-l n-l" A 4A
I n-2 n n

1(, I ! ,'n-l A; (A;,)Z)
--2 BIl+BIl_l-(xAIl_l +AIl - 1 )-,!- --::1+ A

j n--2 fl n

= A~ (1- (2P:l/m) 2) + gn(X).

In estimating gn(x) we use the following five o~servations that

IA"I
_n ~ (m-l)(m-2)
An

IB~ (x)l ~ max((m - 3) IBn (x)I, B~(l))

and for some c > 0

and
c

IBn-Bn-11 ~-IBnl
n

along with many cancellations to get for some positive constant C2

C2 (z ( X

2

) 2· )Igil (x)1 ~---;; B,,(x) + 1+n2/m An(x) .
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Lemmas 2 and 3 now complete the proof of Theorem 6. I
The same method used in the Hermite case can be used to obtain

estimates of the Freud polynomials. A technical problem arises because
there is not an exact cutoff for the change in sign of ¢J(x, n). Therefore in
an interval around x In of size n -2:'3 + jim we use the identity

z'(x)-z'(xo)= IX z"(t)dt
·;xo

to estimate ZI(X) and in turn use the same identity with z' replaced by z to
estimate z(x). From the error term in the differential equation of
Theorem 6 we see that there is a final hurdle to overcome, namely to show
that p~(x) exp( _xm

) is small when x is large enough. This last detail may
be completed using a method that Freud also used. First estimate Pn (x) by

p~(x) exp( _xm ) ~ }'~X2n exp( _xm ) when x> x 111"

Then use a bound for }'n; i.e., for some constant :x> 0

Finally, note that for any e> 0 there is a c, > 0 so that

We conclude with the statement of our theorem.

THEOREM 7. Let Pn(x) denote the Freud polynomial of degree n. Then,
there exists positire constants C, D', and E' such that

(i) p~(x) exp( _xm)~ C/",/(2f3nim;: - x 2 when Ixl ~ 2[3n'''',

(ii) max~ERP~(x)exp(-xm)~D'n:3-1m, and

(iii) max
H

~ p~ (x) exp( -xm)?f; £'n 13 - [,m,for n = 1, 2, 3, ...
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